
Machine Learning for Software Risk Analysis
An Appsurify™ Technical White Paper

Overview

TestBrain™ is a SAAS package developed by
Appsurify, Inc. that uses machine learning to
make software QA testing more efficient.
TestBrain reviews the software code repository,
development history, and test results and applies
machine learning to:
(1) for automated testing, determine a targeted
set of tests to run to validate each new commit;
(2) for manual testing, predict which commits
have the highest risk of containing a defect to
generate a prioritized list of tests to run;
(3) identify and isolate test failures caused by
flaky tests rather than code defects; and
(4) generate metrics on developer efficiency.

One important component of the machine
learning is the creation of a risk model to predict
the likelihood that a commit contains a defect.

TestBrain's risk model builds on academic
research into techniques and metrics able to
predict software defects, and adds proprietary
metrics and refinements based on the company’s
extensive experience testing open source and
commercial code bases.

This white paper describes the metrics that
TestBrain uses for its risk model.

Academic Research

Academic research into techniques and
metrics useful for analysing risk associated with
software changes in large-scale software projects
dates back at least two decades. Academic 1

models are generally classified according to
whether they are based on code metrics or
process metrics. Code metrics are attributes of
the code itself such as the cyclomatic complexity
(the number of logical paths that can be taken
through a code structure), depth of inheritance (a
measure of the inheritance levels from the object
hierarchy top) and class coupling (the number of
classes a single class uses). Process metrics
focus on properties of the software development
process such as the size of the changes, number
of files modified, and experience of the
developers.

Research comparing the correlation of code
metrics and process metrics with the presence of
defects has concluded that process metrics
outperform code metrics, and equals or even
outperforms the combination of code metrics and
process metrics. , Consequently, Appsurify has 2 3

1 Khoshgoftaar, Taghi & C. Munson, John. (1990).
Predicting Software Development Errors Using
Software Complexity Metrics.. IEEE Journal on
Selected Areas in Communications. 8. 253-261.
10.1109/49.46879.

2 Moser, Raimund & Pedrycz, Witold & Succi,
Giancarlo. (2008). A Comparative analysis of the
efficiency of change metrics and static code attributes
for defect prediction. Proceedings - International

focused on implementing a robust set of process
metrics that provide strong predictive correlation
to the likelihood of software defects.

The TestBrain Solution

The TestBrain risk analysis builds upon the
results of academic research and adds
proprietary metrics that Appsurify has found to
improve the prediction accuracy for large-scale,
commercial software development projects.

The process metrics used by TestBrain fall
into three subcategories: (1) commit metrics from
academic research that measure the commit
process; (2) developer metrics from academic
research that measure the developers making the
commit; and (3) TestBrain proprietary metrics.

Commit Metrics

Commit metrics measure how the code is
being modified.

In general, larger changes are more likely to
contain a defect than smaller changes. Changes
across multiple files are more likely to contain a
defect than the same number of lines modified
within a single file. Frequency of change of the
file has also been found to predict defects – when
code has stagnated for a long time, the next
change is likely to introduce a defect. But code
changed by multiple developers within a short
interval also increases the probability of a defect.

Conference on Software Engineering. 181-190.
10.1145/1368088.1368114.

3 ​Foyzur Rahman and Premkumar Devanbu. 2013.
How, and why, process metrics are better. In
Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, Piscataway, NJ,
USA, 432-441.

Specific commit metrics identified by
academic research as having a high correlation
with the risk of defect and utilized by TestBrain
are listed in Table 1.

Developer Metrics

Developer metrics measure the attributes of
the developers writing the code and making the
commit, such as their experience with the code
base in general and in developing the specific
area of the code in the commit.

Specific developer metrics identified by
academic research and utilized by TestBrain are
listed in Table 2.

TestBrain Metrics

In addition to metrics identified in the
academic research, TestBrain includes
proprietary metrics that based on the company’s
experience with both open source and large scale
commercial software projects, it has found to
increase the accuracy of its predictions.

One set of TestBrain proprietary metrics
interpret the developers’ commit messages and
code comments to determine what task the
developers were completing and the confidence
they have in their own commits.

Another set of proprietary metrics examines
the details of the specific code changes for
attributes such as repetition and history. For
example, a single 100 line code update has a
higher risk of defect than 5 lines of change
repeated in 20 locations. Similarly, if the same
change was made previously without causing a
defect, it would indicate a low risk for subsequent
updates.

TestBrain also refines the academic
developer metrics by taking advantage of user
defined areas and historical test results.

Table 1: Commit Metrics Used by TestBrain

– Lines of code in the file before the change
– Number of lines of code added to the file in the commit
– Normalized number of lines of code added to the file in the commit
– Number of lines removed from the file in the commit
– Normalized number of lines removed from the file in the commit
– The number of characters in the commit message
– Number of modified directories
– Number of previous commits for the file
– Number of times the file has been modified alone
– Number of active developers who previously modified the file
– Total number of distinct developers who contributed to the file
– Whether or not the commit was done by the owner of the file
– Number of developers who contributed less than 5% of the file
– Number of files modified by the committer
– Number of developers who modified each file in the commit.
– Total number of distinct developers who modified each file in the commit.
– Number of previous commits made to files in the commit
– Number of other files modified by the developer in commits where the same file was modified
– Entropy of changes of the file

Table 2: Developer Metrics Used by TestBrain

– Total number of commits made on the file by the prime author
– Percentage of lines written by the prime author in the project
– Number of commits made on the file by the prime author in the previous month
– Number of commits made by the developer in the package containing the file
– Average number of commits made by all developers in a commit
– Average amount of time between commits
– Time of day when the commit was made

TestBrain Learning Process

Upon initial configuration where TestBrain is
connected to the project code repository,
TestBrain creates an initial risk profile by
reviewing the complete commit history. From that
time, TestBrain integrates with the test
infrastructure to review all new test results to
continue to refines its risk analysis.

Initial Learning from Code Repository

When initially configured, TestBrain connects
to a Git-based project repository. For existing
projects with a substantial development history, it
analyzes the history of commits to build a
learning database and determine where defects
were previously created.

TestBrain analyzes the text within the commit
messages to identify the commits made to fix
defects. Once TestBrain has identified a “fixing
commit”, it reviews the code history using the ​git
blame function to find the prior commit that
caused the defect. TestBrain then uses these
“defect commits” as historical data to predict
future defects.

To correct any mistakes caused by missing or
misinterpreted commit messages, users are
encouraged to verify the defects identified by
TestBrain and the commits that caused them.
However, any errors here will only impact the
initial settings that will be gradually be
superseded by the live test data.

For new projects or small projects without a
large historical data set, TestBrain uses a general
model based on prior analysis of a collection of
open source projects. However, since the general
model does not include metrics for the new code
base and development team, it is less accurate.
Once a large enough data set is available,

TestBrain updates the model based on the
project code base.

Subsequent Learning from Live Test Results

Once the initial learning is complete,
TestBrain integrates with the test frameworks and
continues to learn and refine its risk analysis by
reading the results of all new tests and
associating them with each new commit. Since
this process does not depend on the
completeness and accuracy of commit
messages, it is more accurate. However, the
learning process takes place gradually over time
as it collects data from new tests and failures.
The more tests and the more failures that
TestBrain sees, the more accurate its results
become.

Prediction Accuracy

A large number of factors affect the accuracy
of the predictions made by TestBrain. The more
historical data and live test data it has, the more
accurate it becomes. It also increases in accuracy
when the development team is stable and
continuing to work on similar code areas and
tasks.

Because the initial learning depends on
commit messages that include text “fixed” or
“resolved”, the completeness and accuracy of the
commit messages will have a large impact on the
initial metrics. Users can improve the accuracy
my manually correcting any mistakes in this initial
defect analysis.

TestBrain has been tested on large open
source repositories to gauge its accuracy. For the
AngularJS project, TestBrain was able to predict
82% of all defects fixed.

Future Enhancements

Appsurify’s R&D team is continuously testing
additional metrics and models to improve the
accuracy of the models. A recent release added
integration with the Jira bug tracking tool to make
use of the historical defect information cataloged
there to improve the reliability of the initial
learning process as well as automatically
populating the results of new tests. Future
releases will add integration with additional bug
tracking and test case management tools to take
advantage of the defect information available.

About Appurify

Appsurify applies machine learning to make
software testing smarter, faster, and cheaper. By
improving the efficiency of software testing,
Appsurify allows you to release your products
faster with fewer defects.The Appsurify team
builds upon decades of experience in software
testing to overcome today’s limitations. Appsurify
was founded in 2017 and is headquartered in
Santa Monica, CA, with development based in
Auckland, New Zealand.

Appsurify, Inc.
appsurify.com

info@appsurify.com
1.650.402.1400

Santa Monica, CA | Auckland, NZ

Copyright © 2019 Appsurify, Inc. All rights reserved. Appsurify, TestBrain, and the Appsurify logo are trademarks of Appsurify, Inc.

