
1

By James Farrier, Founder and CTO

Test Selection with Appsurify’s TestBrain

1

Introduction

Many organizations have a large number of automated
tests. Automated tests are built to reduce the burden
of manual testing, enabling companies to quickly
regression-test their application, leaving manual testers
to perform exploratory testing and more complex tasks
that may be difficult to automate.

Current trends in software development involve
companies shifting their testing left, getting results to
developers faster to move towards a continuous delivery/
deployment model. This involves having the automated
tests run as part of the continuous integration pipeline.
However, for the automated tests to be included in the
pipeline, the automated tests need to execute in a short
amount of time and the results need to be accurate.

When tests take longer than three minutes, studies have
shown that developers become less efficient, either
taking more breaks or moving on to other tasks as they
wait. This leads to context switching, where productivity
is reduced and the number of defects created is
increased. Additionally, long test execution time means
developers receive feedback on their commit later than
anticipated. The later a defect is found, the longer it
takes to fix.

Similarly, if the results
of the automated tests are
not accurate, teams may
either release potentially
buggy software or spend
time debugging, ultimately
decreasing productivity and
increasing frustration.

X

2

To counteract long-running test suites, companies have
the following options:

Parallelize the test execution. This, however, is limited by the number of processors
available to execute the tests and increases the cost of running the test automation.

Reduce test suite size. This may either involve splitting the test suites into multiple, smaller
test suites of different priorities, or removing tests completely. Regardless, this option may
cause defects to be missed and can slow feedback to the developer.

Use test coverage to reduce the number of tests executed. Unfortunately, this option is
often difficult to deploy, requiring the build and tests to be instrumented. Additionally, it
will run any test, which covers the change regardless of whether the test actually tests the
change. Essentially, this means that more tests are being run than necessary.

Continue with long-running test suites.

In this paper, we will describe:

The current developer workflow and how automated test selection can fit into this workflow.

How tests are selected, including initial data setup to speed up the machine learning.

How flaky tests and other defects are automatically created.

Integration of Appsurify’s TestBrain within a company’s CI toolset.

Expected results from Appsurify’s TestBrain test selection.

Appsurify’s TestBrain offers an alternative
solution that uses machine learning and the
test execution history to reduce the number
of tests that need to be executed for
each change. This method also involves the
automation of the defect management cycle
and flaky test failure detection.

Development Workflow

Almost all companies now use a continuous integration tool as
part of their development process. When a developer commits
his code the continuous integration (CI) system picks up the code
change, builds the code, and runs the appropriate set of tests.

Each of these steps can be “gated,” meaning that they need to pass
in order for the next step in the pipeline to be executed. When tests
are a gated step in the CI pipeline, developers and testers need to
wait for the tests to be executed before the build can be released.

Incorrect test results or long-running test executions tests are
frequently removed from the CI pipeline. Unfortunately, this
often leads to tests not being run, reducing the value of the test
automation and potentially meaning defects are missed.

3

Selecting Tests
Appsurify’s TestBrain uses a machine learning model to determine
the likelihood of a test failing based on a particular change.
As a result, TestBrain is able to produce a list of tests that
are most likely to fail for each specific change.

To build the machine learning model, data is extracted from
the change, including the files changed and the author of
the change. Then, riskiness of the change is calculated by
TestBrain’s software. Additionally, the test result data is added
to the model, mapping which changes in the past have caused
tests to fail.

To increase the accuracy of the test selection, Appsurify’s
TestBrain automates the creation of defects, including
determining the type of defect. This data may also be
overwritten by the test team. Using this data, we are able to
determine the real reason the tests failed when compared to
those which have failed due to flakiness.

Once the tests have been selected, they are further prioritized
based on the likelihood of finding a defect per second (i.e., a
test which is five percent likely to find a defect and takes one
minute to execute will be prioritized higher than a test that
is six percent likely to find a defect and takes two minutes to
complete). By prioritizing the tests in this way, we are able to
further reduce the time taken to find a failure and thus reduce
the time taken to provide feedback to the developers.

4

Data Setup

To reduce the time required to produce accurate results, Appsurify’s TestBrain allows users to provide
the following information to development teams to improve the results of its test prediction:

Test set to functional area mapping
Mapping which sets of tests map to which sets of files within the application.

Functional area dependencies
Mapping sets of files that then depend on other sets of files.

5

Initial Heuristic

Initially, before the machine learning model is capable of
returning accurate results, Appsurify’s TestBrain can use the
data input above to determine which set of tests to run. In

this case, TestBrain looks at which set of files have changed
in the commit being analyzed and then compares this to the
data created above, determining which tests to run based on

the dependencies and the test set mapping. While in Heuristic
Mode, TestBrain will also use defects to determine other

potential tests to run that may not be included in the mapping.

6

Test History

This includes details about the defect created from the test result. The defects
created can be various types that are detailed in the following section. As
a result, TestBrain is able to prioritize tests that are more likely to find “real”
defects as opposed to flaky failures.

Data Setup

The data that can be added in the
previous section.

Files Changed

Which files have been changed by
 the commit.

Change Risk

Details of the risk of the change can be
found in TestBrain’s previous white paper.

Defect Density

Which areas of the code base are most
likely to contain defects.

Machine Learning

TestBrain initially uses a heuristic to determine which tests to execute. However, after each test
execution, TestBrain compares the results to those from the machine learning model. When the
model produces results that are more accurate than the heuristic, TestBrain then switches to start
using the machine learning model.

TestBrain uses a classification model that uses the following features (and others not listed) to
determine which tests to execute

Flaky Tests and Other Defects

Code defect:
Real defects in code.

Flaky failure:
The failure was non-deterministic, it may be that the test itself does not create a stable
result or the application may also cause unstable results. This is frequently caused by race
conditions, but a large number of other factors can cause flaky failures.

Invalid test:
The test is no longer valid due to changes to the code. The change made has caused the test
to be invalid (i.e., it is out of date as this failure was expected).

Outside scope:
The test failure was outside the scope of what the test was attempting to validate.

When a test fails, TestBrain raises an appropriate defect based on the type of test failure. The defect
types that can be raised include:

The accuracy of the machine learning mapping is aided by
filtering out test failures that are not caused by code defects.

7

The classification of a defect is determined via either manual
classification, a heuristic, or machine learning model.

Heuristic: TestBrain can be configured to automatically rerun
any failures for a specified number of times. If it passes once
on retry, the failure is determined to be flaky.

TestBrain analyzes the test results and compares it to previous results to determine the type of
defect. The model compares new failures to the previous failures based on the following factors (and
others not listed):

Average run time of the test when passing vs. run time for this failure (i.e., if a test typically takes
one minute to run and this time fails after five seconds, it is highly likely that something went wrong
setting up the test itself, indicating a flaky failure).

Defect results can be manually updated by
the user to the correct defect type and the
machine learning model is adjusted.

Test name

Recent history of the test
shows many different results

Area of the code changed

LogsDefect failure message

8

X

9

Appsurify’s TestBrain
Integration

Appsurify’s TestBrain is
simple to integrate into the
developer workflow.

Appsurify’s TestBrain has an API that returns the
set of tests which should be run for the specified
change. The format of the returned tests can be
changed based on the parameters supplied in the
API request.

For easy integration, TestBrain supplies a script
which, based on parameters used, will automatically
call out to TestBrain’s APIs to determine which tests to
run, run those specific tests, and verify the results.

TestBrain needs to see data from the
repository, which can be connected
either by:

There are two points of integration:

Integration with the method by which tests
are executed, often the CI system.

A script that pushes metadata to TestBrain
which can be run either on a VM or as part
of the CI.

A direct connection to the repository via
multiple methods. For more information,
see the TestBrain knowledge base.

10

Conclusion
Appsurify’s TestBrain has managed to achieve excellent results
on both open and closed source projects. On the jsoup open
source project, TestBrain was able to reduce the number of
tests executed per test run by 98 percent while catching all
defects. Initial customers have also had impressive reductions
in their testing, with companies being able to reduce their
testing by 80 percent from the first test run.

By reducing the amount of testing required by such substantial amounts,
Appsurify’s TestBrain not only is able to speed up getting results to
developers, but also increases productivity and reduces the damage caused
by defects as well as the costs of testing.

As Appsurify’s TestBrain consumes more data the accuracy of its results increases.
Using the data setup detailed above,

TestBrain is quickly able to
reduce testing by upwards of 80
percent, moving test execution
time from 24 hours to one hour
in a single instance.

After roughly 500 test runs,
the accuracy allows testing to
be reduced by upwards of 95
percent.

appsurify.com 1.650.402.1400

To learn how Appsurify’s TestBrain can meet your specific software

testing needs, visit our website or give us a call.

